QUESTION BANK 2020

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 OUESTION BANK								
Subj	Subject with Code : R&C((20ME3118) Course & Specialization: M.Tech – Th. Engg							
Year & Sem: I & II-Sem			Regi	Regulation: R20				
	LINIT_I							
1.	(a)	What are Cryogenic and its necessity in the recent era?	L2	C01	5M			
	(b)	Give the applications of Cryogenics in different fields.	L3	C01	5M			
2.		A Carnot refrigerator using R12 as working fluid operates between 40°C and -30°C.e Determine the work of compression and cooling effect produced by the cycle	L4	C01	5M			
3.	(a)	Discuss the effects of evaporator and condenser temperatures on Carnot	L2	C01	5M			
	(b)	Derive the equation for Carnot COP.	L3	C01	10M			
4.		Discuss the standard vapour compression refrigeration system	L2	C01	10M			
5.		An ideal refrigeration cycle operates with R134a as the working fluid. The temperature of refrigerant in the condenser and evaporator are 40°C and -20°C respectively. The mass flow rate of refrigerant is	L4	C01	10M			
6.		Explain actual Vapour Compression Refrigeration System.	L2	C01	10 M			
7.	(a)	Describe the comparison between a VCRS cycle with and with out sub cooling.	L2	C01	5M			
	(b)	Describe the effect of superheat on specific refrigeration effect and work of compression.	L2	C01	5M			
8.	(a)	Explain the working of two stage cascade refrigeration system with neat diagram.	L2	C01	5M			
	(b)	With a neat sketch explain the working of Multistage compression with inter cooling.	L2	C01	5M			
9.		Explain about Multiple evaporators at the same temperature with single compressor and expansion valve.	L2	C01	10M			
10.	(a)	What are the advantages and disadvantages of the Joule-Thomson Process?	L1	C01	10M			
	(b)	The temperature limits of an ammonia refrigeration system are 25° C and -10° C. If the gas is dry at the end of compression, calculate the coefficient of performance of the cycle assuming no under cooling of the liquid ammonia. Use the following table for properties of ammonia. Temperature ° Liquid Heat Latent Heat Liquid Entropy C (kj /kg) (kj /kg) (kj / kg K)						

25	298.9	1166.94	1.1242
-10	135.37	1297.68	0.5443

<u>UNIT-II</u>

1.		Explain with the help of a sketch, the principle of operation of a single stage, single acting reciprocating compressor	L3	C02	10M
2.	(a)	Draw and explain P-V and T-S diagrams of a reciprocating compressor	L3	C02	5M
	(b)	Derive an expression for Power required to drive a single stage reciprocating compressor	L2	CO2	5M
3.		Derive an expression for work done by a reciprocating compressor with clearance volume	L4	C02	10M
4.		Derive an expression for Volumetric efficiency of a Reciprocating compressor	L3	C02	10M
5.	(a)	Explain the working of Two stage reciprocating compressor with Inter cooler	L3	C02	5M
	(b)	List out the advantages of multi-stage compressor	L1	CO2	5M
6.		Explain in detail about various Types of inter cooling used in two stage Reciprocating Compressor.	L2	C02	10 M
7.		Derive an expression for the work done of a two stage Reciprocating Compressor with inter cooling.	L2	C02	10M
8.		Draw the Performance characteristics of refrigerant Reciprocating Compressor.	L2	C02	10 M
9.		Discuss the working of screw compressor with a neat sketch and also mention its merits and demerits	L3	C02	10M
10.	(a)	Differentiate between screw compressor and scroll compressor	L3	C02	5M
	(b)	Write about characteristics of scroll compressor	L1	CO2	5M

UNIT-III

1.	(a)	Classify the condensers and discuss about air cooled condensers.	L2	C03	5M
	(b)	Explain the function of water cooled condensers.	L2	CO3	5M
2.		With neat sketch explain evaporative condenser function.	L2	CO3	10M
3.	(a)	What is Heat Rejection Rate? Explain the condenser heat rejection ratio (HRR) in terms of COP	L2	CO3	5M
	(b)	Discuss about log mean temperature difference in a condenser.	L3	CO3	5M
4.		Derive the overall heat transfer coefficient for design of a condenser.	L3	CO3	10M
5.		What is the concept of Wilson's plot and how it is useful to design the condensers and evaporators?	L2	CO3	10M

QUESTION BANK 2020					
6.	(a)	Differentiate air cooled condensers and water cooled condensers	L2	CO4	5M
	(b)	How can you classify the evaporators and explain the working of an	L3	CO4	5M
7.	(a)	evaporator Explain the working of bare tube coil evaporator with neat diagram.	L4	CO4	5M
	(b)	With a neat diagram Explain the working of shell and coil evaporator.	L2	CO4	5M
8.	(a)	Define the term refrigerant. How it is classified?	L1	CO4	5M
	(b)	List out the properties needed for the selection of refrigerants.	L1	CO4	5M
9.		Elucidate the desirable properties of an ideal refrigerant.	L2	CO4	5M
10.	(a)	Explain the process of Refrigerant nomenclature with an example	L3	CO4	5M
	(b)	List out various Refrigeration Applications.	L1	CO4	5M
		UNIT-IV			
1.	(a)	What are the desired properties of an ideal insulating material	L1	CO5	5M
	(b)	List the advantages of Providing Insulation	L1	CO5	5M
2.	(a)	Explain different types of Insulating Materials Used in Refrigeration system	L2	CO5	5M
	(b)	Write a short notes on Economical Thickness of Insulation	L2	CO5	5M
3.		Write short notes on different types of insulation used in cryogenics	L2	CO5	10 M
4.	(a)	Distinguish between various insulations used in cryogenics	L2	CO5	5M
	(b)	What is super insulation? Discuss	L2	CO5	5M
5		With a neat sketch explain a cryogenic liquid storage Dewar vessel	L2	CO5	10M
6.	(a)	Discuss the process of Gas separation system.	L3	CO5	5M
	(b)	How to tackle thermal contraction problem in cryogenic transfer lines	L1	CO5	5M
7.	(a)	Explain various methods of draining a cryogenic vessel	L2	CO5	5M
	(b)	With neat diagram explain the working of Vacuum insulated Bayonet	L2	CO5	5M
8.		Describe the working of air separation system with a neat sketch and also mention its applications	L2	CO5	10M
9.		Elucidate the properties of Low temperature Engineering Materials.	L2	CO5	10M
10.	(a)	Write a short notes on Adiabatic magnetization and Adiabatic demagnetization	L2	CO5	5M
	(b)	How to handle the Cryogenic Liquids?	L1	CO5	5M

QUESTION BANK 2020 UNIT-V 1. Describe the process of liquification of gases. L2 CO6 10M 2. Sketch and explain the working of Linde system. L3 CO6 10M 3. Explain the working of Dual Pressure Linde system with neat L2 CO6 10M diagram. 4. Discuss the different types of liquefaction methods and explain any L1 CO6 5M one method. 5. Describe the method adopted for Liquefaction of Hydrogen L3 CO6 10M 6. With the help of a neat sketch discuss about the Liquefaction of L2 CO6 10M Helium 7. Derive an expression for COP of Linde System for Liquefaction of L3 CO6 10M Gases List out applications of cryogenics temperatures in the major domains. L3 CO6 5M 8. (a) (b) What are the major properties of cryogenic fluids required for using in L1 CO6 5M gas separation 9. (a) Differentiate between super fluidity and super conductivity L2 CO6 5M Discuss the arrangement used for producing low temperatures by L2 CO6 5M (b) adiabatic demagnetization of a paramagnetic salt. 10 (a) What is super fluidity? Explain its properties L1 CO6 5M What are Thermal Properties of Materials? L1 CO6 5M (b)

Prepared By: Dr S Sunil Kumar Reddy.

